1.1

Chapte

Int

OVERVIEW OF C

rod llCﬁon to C

1.1.1 Introduction

C is a high level Computer Programming Language. It is the most widely used
language for systems programming work like design of Operating Systems, Compilers,
Editors, Assemblers, various software tools, software utilities, etc. This language can
also be used for small business data processing applications.

Originally, the language B was developed by Ken Thomson in 1970 for the UNIX
operating system on DEC series PDP-7 computer. For many years, the description of C
was the reference manual in the first edition of the C programming language. In 1983,
the American National Standard Institute (ANSI) established a committee for complete
definition of C and the same was completed in 1988. Now C is called as ANSI C.

1.1.2 Importance of C Language

There are several important features of C language that makes it as a popular one. Few
of them are described below:

» C is highly portable. This means that it is independent of any particular
machine. With small changes, it is easy to write a C program that can run on
any platform like UNIX, DOS, Windows, etc. This portability is achieved by
having a collection of standard header files. These header files combined with

2

Chapter1 » Introduction to C

the standard library routines (I/O functions in particular), one can access input
and output devices.

* Cis fast. There are many reasons for this. We shall give few of them:

C has many standard operators like ++, --, %, +=, -=, *=, /=, etc. which
correspond to direct hardware operations.

= C uses pointers through which the data can be stored or retrieved in memory.
In other words, pointer variables can hold memory addresses and access the
data. .

» C variables can be initialized during declarations itself there by execution time
is reduced.

* C is compact. C combines some complicated operations or statements into
special operators. For example, the assignment statement a = a + b; can
be written as a += b, where += is an operator. Similarly, i = i + 1; can
be written as i++.

* C allows both low-level and high-level programming. It simply means that the
hardware memory, registers, etc. can be accessed and manipulated in C
programs. For example, bit manipulations, register variable declarations, octal
and hexadecimal data representation, etc. are all possible in C programs. In
other words the data types and control structures provided by C are supported
directly by most computers.

* C offers only straight forward, single thread control flow: tests, loops,
grouping, and subprograms, but not multiprogramming, parallel operations,
synchronization, or co-routines.

Disadvantages

» Though pointers offer direct access of memory and efficient character string
manipulations, sometimes it may be confusing and dangerous.

* Some symbols in C are ambiguous — for example, & is an address operator, &&
is a logical operator and & is a bit-wise operator.

1.1.3 Basic Structure of a C Program

This section gives an outline of a typical C program. Some of the sections may be
optional or all sections need not be there in all programs.

The basic building block of C programs is the function. A function is a separate
block of code that performs a specific task (it is also called as a module or a
subprogram). Each function will contain statements that carry out the task of the
function. The Figure 1.1 shows the basic structure of a C program.

When variables are declared outside the function(s), it is called as global variables
and if the variables are declared inside the function(s), then they are called as local
variables. The global variables are accessible by all the functions. However, the local
variables are visible only with in the scope of that particular function.

Fundamentals of Data Structures with C 3

/* preprocessor directives */
/* function prototype definitions */
/* global variable declaration */

/* function name or function header */

/* main() function */
/* body of the function */
/* user defined function(s) */
/* body of the function */

#include <stdio.h>
#define MAX 10
int x; /* global variable */

void main()

{
variable declarations; /* local variables */
statement-1;
statement-2;
statement-n;
}
int funcl (parameters) /* function header */
{ _
variable declarations; /* local variables */
statement-1;
statement-2;
statement-n;
}

Fig. 1.1 Structure of a typical C program.

The <stdio.h> is a standard header file that appears as a first line in most of the
C programs. This is known as the standard input/output header file, it copies an
external header file into the source file at that location.

Function prototype statements provide information that describes each function
(exceptmain ()) defined in the program.

Generally every C program should have a predefined function called main ().
In fact, the execution of a C program starts from the first statement in main (). One
can place functions (with out main ()) in a separate file and compile the same. This is
called as separate compilation.

Every function will have one or more declarations and statements. A program
executes statements in the body of the function in the order in which it appears from top

4 Chapter1 » Introduction to C

to bottom. However, when control statements or looping is used,.then the flow of
execution may get altered.

There is no pre-defined order of placing the functions but Figure 1.1 is one possible
way that is used by many C programmers.

1.1.4 Programming Style

Every programming language has a particular style which indicates the way in which
the statements are written and placed in a file. In C language we can place the
statements, declarations, etc. any where in the file, but proper indentation is very
important. The C programs should have appropriate comments. The comments in C has
a syntax: .

/* this is a comment line */
In UNIX or TURBO-C or Borland C compiler, all C programs are written in lowercase

letters only. Uppercase letters may be used for defining constants, variables, etc. In a
single line, multiple statements can appear. For example,

X = 1;
Yy = 2;
z = 3;

can also be written as,

x=1; vy =2; z=3;
Looking at another example,

if (x <= 10) z = x + 1;

Writing comments is one of the prime requirements for a good programming style. This
is mainly to increase the readability of the program.

1.1.5 Sample C Programs

Though it is too early to see any example C program, it would enable the reader to get
some idea of a C program. The aim of this example is to print ""Hello!" on the screen.
The Program 1.1 does this.

Program 1.1
Printing Hello

#include <stdio.h>
void main()
{
printf ("Hello\n");

Fundamentals of Data Structures with C 5

stdio.h: Standard header file.
void main(): main function and receives no arguments.
printf () : calls a built-in function printf () to print all the

characters between " ". The '\n' is used for new line.
The braces { } are used for the body of the function.

Program 1.2

Adding two data elements

/* Program to add two data elements */

/* Author : S. Nandagopalan Date : 19/09/2001 */
#include <stdio.h>

void main()

{

int accno; /* account number - line -1 */

float deposit, balance; /* line - 2 */
accno = 1050; /* line - 3 */
balance = 1700.50; /* line - 4 */
deposit = 226.50; /* line - 5 */
balance = balance + deposit; /* update balance */

/* line - 6 */
printf ("Account No = %d\n", accno); /*line - 7%/
/* line - 8 */
printf ("Current balance = $6.2f\n", balance);

} /* end of main, line - 9*x/

line -1 and line— 2: These two lines are simple integer and float variable

declarations.

lines -3,4and 5: These lines are assignment statements which assign the initial

values for the account number (accno), balance and
deposit.

line - 6: This line is also an assignment statement, that adds balance

and deposit ie. 1927.00. This updated value will in turn be
assigned to balance.

lines - 7 and 8: The result and the account number will be printed on the

monitor. Line — 7 prints the account number in integer format,
whereas line — 8 prints in floating point format.

line - 9: The brace } indicates the end of main program.

6 Chapter1 » introduction to C

Program 1.3
User defined function - demo-

#include <stdio.h>
float transaction (float, float); /* line -1 */
void main/()

{
int accno; :
float deposit, balance;
accno = 1050;
balance = 1700.50;
deposit = 226.50;
balance = transaction(balance, deposit);/* line - 2 */
printf ("Account No = %d\n", accno);
printf ("Current balance = %6.2f\n", balance);
}

float transaction (float b, float d) /* line - 3 */
{

float temp;

temp = b + d;

return temp; /* line - 4 */

}os

line - 1: is a prototype declaration for the user defined function called
transaction().

line - 2: is the calling sequence of the function. The values sent to the function

are balance and deposit.

1.2 Constants, Variables and Data Types

1.2.1 Introduction

This chapter introduces the meaning of constants, variables and various other data types
that are the basic building blocks of C statements. All these statements put together
form a program.

Every language is based upon an alphabet of character. The English alphabet, for
example, consists of 26 letters A to Z. Similarly, the decimal system uses the digits 0, 1,
2, ...,9. In the same way, C language also uses a set of characters. Today most of the
Personal Computers follow ASCII (American Standard Code for Information
Interchange) character set. The program statements must follow the syntax of the C
language. The syntax is a set of rules which determines whether the sentence is well
formed or not.

Fundamentals of Data Structures with C 7

1.2.2 Character Set

C language characters are mainly from the ASCII character set and grouped in to four
categories:

v letters

= digits

s special characters

= white spaces

Letters
The C letters are
A, B, C,uu,Z
a, b, c,u., 2
Digits

The digits of C language are
0, 1, 2,uu.,9

Special Characters

Sl No. Character Meaning
1 s comma
2 period
3 ; semi colon
4 colon
5 ? question mark
6 ' apostrophe
7 " quote
8 ! exclamation
9 | vertical bar
10 / slash
11 \ back slash
12 ~ tilde
13 _ underscore
14 $ dollar
15 # hash
16 & ampersand
17 A caret
18 * asterik
19 - minus
20 % percent
21 + plus
22 < less than

Chapter1 » Introduction to C
23 > greater than
24 (left parenthesis
25) right parenthesis
26 [left bracket
27] right bracket
28 { left brace
29) right brace
White Space
= Blank space
* Horizontal tab
* Carriage Return
* New Line
* Form feed
1.2.3 C Tokens

In a C source file, each word, and punctuation mark are called as tokens. There are six
classes of tokens namely,

1. Identifiers

2. Constants

3. Keywords

4. String Literals
5. Operators

6. Other separators

White space characters are ignored except as they separate tokens. Some white space is
required to separate, otherwise adjacent identifiers, keywords and constants. We shall
try to understand each of these tokens in detail.

Identifier

An identifier is a sequence of letters and digits. The first character must be a letter (the
underscore character _ is also taken as a letter). For example,

account MAX
deposit Max

n bubble_sort
filel

C language is case sensitive, i.e. uppercase and lowercase characters are treated
differently. In the above example MAX and Max are different identifiers. Following are
some invalid identifiers:

9amount - first letter can not be a digit
char - key word

Fundamentals of Data Structures with C 9

bubble-sort - - is an operator
auto - key word
selection sort - space not allowed

Keywords

Every programming language uses its alphabet to form words or symbols that make up
the vocabulary of the language. Many of the special characters have a well-defined
meaning in certain context and termed as a keyword. In C there are some reserved
words that have specific meaning and can not be used as variable names.
The advantages of reserved words are:

* They help to make the program more readable.

= They permit the compiler to speed up its compilation process.

= They facilitate error recovery.
However, when the number of reserved words grows it is difficult to remember all of
them. The following identifiers are reserved for use as keyword:

auto double int static
break else long struct
case enum register switch
char extern return typedef
const float short union
continue for signed void
default goto unsigned volatile
do if sizeof while

Some of the extended keywords are listed below:

far Jfortran huge interrupt
near pascal asm
Constants

Following are the types of constants used in C language:
» Integer constant
= floating point or real constant
= character and string constant
* enumeration constant

Integer constant

There are three types of integer constants, depending upon its form, value and suffix —
namely decimal, octal and hexadecimal.
Decimal constants are a sequence of digits 0, 1, 2,.....,.9 preceded by an unary
operator + or -. Below are few examples,
56 -4 30715 +99

You can not add any other non-digit characters like, or $ or Rs. or :

10

Chapter1 » Introduction to C

7,525 (, is not permitted)
$10,000 ($ and, not permitted)
Rs. 134.50 (Rs not permitted)

An integer constant may be suffixed by the letter u or U to specify that it is unsigned.
When a constant is suffixed by 1 or L then it represents long integer.

Decimal constant

int long int unsigned long int

For example,
i) 42756u or 42756U (unsigned integer)
i1) 9786251ul or 9786251UL (unsigned long inf)
iii) 175261 or 17526L (long int)

(b) Floating point or Real Constant

A floating point constant consists of an integer part, a decimal point and a fractional
part. For example, in 175.26, the 175 is the integer part and 26 is the fractional part.
More examples are shown below:

3.141590.0001 75.
.001 1.2

The floating point numbers are useful when there is a requirement for more accuracy
like scientific calculations and financial or business applications.

The keyword double is same as float except that the memory allocated is twice as
that of the float. The float type occupies 4 bytes and double takes 8 bytes. A very
important point which the reader must remember is that, at execution time the value of
a character constant is the numeric value of that character. For example,

‘a’ is stored as ASCII value 97 decimal.
Therefore, you can perform character arithmetic like the one shown below:
'B' + 1 yields 'C’
This means that the ASCII value of 'B' is added with 1 which gives away the result 'C'.
Escape sequence characters
There are certain special escape sequence character constants which have specific
meaning. The following Table 1.1 gives all the escape characters of C.
String Constant

A string is a collection of one or more ASCII characters enclosed with in a pair of
double quotes. For example,

Fundamentals of Data Structures with C 1

"Bangalore”
"Hi!"
"Pin-code 560 004"
W
Table 1.1 Escape sequence characters
newline \n backslash \
horizontal tab \t question mark’ \?
vertical tab \v single quote \
back space \b double quote \"
carriage return \r octal number \000
form feed \f hex number \xhh
bell \a
Note
\000 - specifies an octal digit to represent the desired character.
\xhh - x followed by hexadecimal digits to specify the desired character.
\0 - represents ASCII NULL. This is used to terminate a character string.

Enumeration constant

Enumerations are unique types with values ranging over a set of name constants called
Enumerators. Identifiers declared as enumerators are constants of typeint. You will
see more details about enumerations in later chapters.

1.3 Data Types

There are only basic or primitive data types in C.

Sl No. | Data Type | Description ‘ Size
1 char character 1 byte
2 int integer 2 bytes
3 float single precision floating point 4 bytes
4 double double precision floating point 8 bytes

\
In addition to the above data types, C also provides short and long types.

Integer Data Type

The int data type will be the natural size of the host machine and short is often 16 bits
(2 bytes), long is 32 bits (4 bytes) and int is either 16 or 32 bits depending upon the
machine.

14

Chapter1 » Introductionto C

Assignment and Initlization

Once the variable is declared, it is ready to take on values depending upon the type of
the variable. The syntax of an assignment statement is:

var_name = constant or var_name;

Here, the = is used as an assignment operator. Below are few examples:

int n;

n = 10; /* asssignment statement */

char c; '

c = 'A';
When a value is specified for a variable during declaration, then its is called as
initlization. For example,

int n = 10;
char ¢ = 'A';

The advantage of initlization is that the value of the variable n or c is ready at the time
of compilation itself. Of course, it is possible to assign other values to these variables
later in the program.

Multiple assignment operation

A single value can be assigned to multiple variables with in a single assignment
statement. See the below example statements:

a=>b=c=0;
n = MAX = 80;

Declaring Symbolic Constants

Symbolic constants are variables that are same as the associated constants and are
declared as,.

#define TRUE 1
#define FALSE 0

The symbolic constants are normally handled by the preprocessor of the compiler.
C preprocessing is a process that occurs before actual compilation begins. The
preprocessor is part of the main compiler. It is the first step of the compilation process
and the output of this will be given to the later steps of the compilation process.

The preprocessor directives start with a #define folllowed by an identifier and
then followed by a constant as shown above. During the preprocessing, the compiler
replaces all occurrences of these identifiers with the values specified. Unlike a variable,
the value of the symbolic constant can not be changed.

#define n 10

n = 20; /* illegal */

Fundamentals of Data Structures with C 15

Declaring a variable Constant
ANSI standard has introduced a new way of declaring a variable which could act like a
constant by using const declaration (see below).

const int n = 10;

const float pi = 3.1415;

The value of n and pi can not be changed during program execution. This kind of
declaration helps the program to execute faster than a preprocessor way of declaration
(i.e. #define).

User defined type declaration

Sometimes it is more readable and meaningful to define our own data types. For
example, to add a new data type UCHAR; unsigned char the following declaration can
be used:

typedef unsigned char UCHAR;
Later, you can make declarations as,
UCHAR chl, ch2y
The syntax for the used defined data type is:
typedef basic_data_type user_defined_name;
Take a look at another example,
typedef char String([80];
String message; /* message is of type String */
Enumerated data type declaration

When you want to declare variables with an associated set of constant values, C
provides the best method called as enumeration (enum) data type. The syntax and
example is shown below:

enum tag { enumeration list };
enum boolean {NO, YES};

The first name in enum has a value 0, thenext 1, and so on, unless explicit values are
specified.

enum days_of_week {MON, TUE, WED, THU, FRI, SAT, SUN};
enum months {JAN = 1,FEB,MAR,APR,MAY,JUN,

JUL, AUG, SEP, OCT,NOV, DEC} ;
/* JAN = 1, FEB = 2,MAR = 3, etc. */

Later variables can be declared of enum type, as shown below:

boolean flag; /* flag can take values YES or NO */

16 Chapter1 » Introduction to C

Example Program 1.5
Integer constant - demo.

#include <stdio.h>
void main()

{
int dec = 16; /* decimal */
int oct = 020; /* octal */
int hex = 0x10; /* hexadecimal */
printf("\n Answer in decimal = %d %d %d",
dec, oct, hex) ;
printf ("\n Answer in octal = %o %o %o",
dec, oct, hex) ;
printf ("\n Answer in hexadecimal = %$x %x %x",
dec, oct,hex) ;
}
Sample Run

Answer in decimal = 16 16 16
Answer in octal = 20 20 20
Answer in hexadecimal = 10 10 10

The printf() function prints the values of variables on the console as per the
conversion modifiers (like %d, %0, %x, etc.) given as the first argument. We shall study
moreabout this function in the next chdpter.

Program 1.6
long integer constants - demo

#include <stdio.h>
void main()

{
long ldec, loct, lhex;
ldec = 16L;
loct = 020L;
lhex = 0x10L;
printf("\n Long decimal = %1d", ldec);
printf("\n Long octal = %lo", loct);
printf("\n Long hex = %1x", lhex);

}

Sample Run

Long decimal = 16
Long octal = 20

Fundamentals of Data Structures with C 17

Long hex = 10
For long int the coversion modifier to be used is 1d or 1o or 1x, etc.

Example Program 1.7
Character declaration and arithmetic.

#include <stdio.h>
void main()

{
char ¢ = 'A';
char x;
X = ¢ + 1; /* ASCII value of 'A' + 1 */
printf ("ASCII code of A = %d\n", c);
printf("x = %c\n", x);

}

Sample Rub

ASCII code of A = 65
X =B

1.5 MANAGING INPUT AND OUTPUT OPERATIONS

1.5.1 Introduction

The input and output operations are managed through a set of I/O functions. For any
programming activity, the data has to be read from some input device and the results
are to be sent to the output device. In most of the cases, the default input device is a
keyboard and the default output device is a monitor. In general, C operates with input
and output in terms of data streams. A stream is a flow of data from keyboard to the
system or from system to monitor.

To handle the /O activity every computer language has reserved commands (not
functions). However, in C, I/O is done through a set of functions like getchar (),
putchar (), gets (), puts (), etc. These set of I/O functions are stored in include
files called as <stdio.h>. You would have noticed in the programs of earlier
chapters that the purpose of the #include <stdio.h> statement is to inform the
compiler about the prototypes of I/O functions.

1.5.2 Unformatted single Character Reading and Printing

getchar() and putchar()

The function getchar() reads a single character from the keyboard and
putchar () writes a single character to the console.

18 Chapter1 » Introduction to C

You can read a character from the keyboard and assign it to the variable ¢ with the
following statement

c = getchar();

We shail see in the following lines, how getchar () works. When the function
getchar () is executed, it waits for the user to enter a character followed by enter key
(Carriage Return <CR>). The character entered is assigned to the variable c.
However, when the user enters more than on character and then press the Enter key —
what happens?

Well, most of the IBM keyboards are buffered, that is, whenever a key is pressed,
the character goes to a buffer (memory) in the keyboard. When more characters are
pressed, all of these characters go to the buffer. The below Figure 1.3 illustrates the
keyboard contents after the user has pressed abcde f<CR>

a b c d e f

Fig. 1.3 Keyboard buffer

When you press <CR>, the first character from the buffer is assigned to the variable c.
The remaining characters in the buffer will stay in the buffer itself. It is possible to clear
the keyboard buffer by using fflush() function. The character read using
getchar () can be displayed on the screen with putchar () function.

Program 1.8
getchar from keyboard

#include <stdio.h>
void main ()

{
char c¢; -
printf ("Enter a character: ");
¢ = getchar();
putchar(c) ;
}
Sample Run

Enter a character: a
a

Fundamentals of Data Structures with C 19

1.5.3 Formatted I/O - scanf() and printf()

The scanf () function reads characters from the keyboard, interprets them according
to the format specification given in the first argument and stores the value in the
variable(s) given in the second argument.

int scanf (format specifier, variable(s));
or
int scanf (format specifier, vi, v2, ...);

For instance, you can read a single character from the keyboard (same as getchar ())
by using scanf ("%c", &c); Here, %c is the conversion specifier. That is, it
directs the conversion of the next input field. Normally, any conversion specifier starts
with a % character followed by an appropriate character for that type — in this case itis a
character. Table 1.3 shows the various conversion specifiers for scanf () function.

Table 1.3 Scanf() Conversion Specifiers

1 Joc Single character

2 %d or %i Signed decimal integer

3 %e, %f, or %og Floating point number

4 %0 or %0 Octal integer

5 %ox or %X Hexadecimal integer

6 Tos Character string

7 ou Unsigned character integer
8 %D Pointer

The conversion characters d, i, o, u and x may be preceded by the character 1
(ell) to indicate that it is long.

$1ld - long integer (decimal)
$1lx - long hexadecimal

Similarly, if 1 is used with e, £ or g, then it indicates double.

$1f - double rather than float
%le - double rather than float
$lg - double rather than float

Few examples are shown below:

scanf ("%$d", &n); /* read an integer */
scanf ("$f", &amount); /* reads a float */
scanf("%c", &c); /* reads a single character */
scanf ("%$1d", &long_int); /* reads a long integer */
scanf ("$1f", &double_num); /* reads a double */
You can also read more than one variable using a single scanf () function. For
example,
scanf ("%$d%d", &day, &year);
scanf ("$d%f", &accno, &amount);

20

Chapter1 » Introductionto C

The Address Operator (&)

The ampersand(&) sign in the scanf () is called as an address operator. When
scanf () function is encountered in the program, the control is passed to the
scanf () routine, where it gets the characters from the keyboard and passes that to the
calling program (i.e. main () function). For the moment, just remember that & must be
used whenever you read a scalar variable from the keyboard or from a file.

Conversion modifier (*)
When * appears in the format specifier, it is called as a suppression operator. For
example,

scanf ("$*dsd", &value);

When two integers are entered, only the second value will be assigned to the variable.
The advantage of * is mainly in processing the data files. For example, if the data file
contains several fields like

<idno> <name> <total_salary> <deductions> <net_salary>
1700 DEEPAK 12726.00 1027.00 11699.00

The processing function may want to access the <idno> and <net_salary> fields
and in that case the * operator may be used to skip the rest of the fields.

To Read specified number of digits

When you want to read only certain number of digits from the input device (irrespective
of the number of digits entered by the user), then you can use the following syntax:

scanf ("%d%2d4d", &nl, &n2);

When you enter 1234 1234, the variable n1 gets 1234 and the variable n2 gets 12. This
is because of "%2d".

The Output function - printf()

The output function printf () sends the values of variables given in the second
argument to the console.

int printf(format specifier, vl, v2, ..);
Look at the below example,
printf("$d", nl); /* prints the value of nl */
if the value of nl is 21, then 21 will appear on the console. Below are some more
examples:
T ‘printf(*hello!"); /* prints Hello! */
printf("\n"); /* newline */
‘printf ("The Answer is = %d\n", data);
printf("c = %c", c); /* prints value of c */
printf("%£f", salary); T

Fundamentals of Data Structures with C 21

It is possible to send the floating point numbers to the screen in a highly formatted

form.
$<flag> <width>.<precision><length>
Table 1.4
Sk No. | Flag Description
1 - left justify the item
2 + show the sign
3 space show the sign
4 0 pad with leading zeros
5 # 0 for octal, Ox for hex
SL. No. | Width Description
1 integer minimum field width
S1. No. | Width Description
1 integer number of digits to display for an integer.
number of digits after the decimal point.

Examples for the integer numbers and floating points are shown below:

Integer Numbers

column--> 1 2 3 4 5 7

1) printf("%d", 7206); 7206
2) printf("$74", 7206); 72 06
3) printf("%24", 7206); 72 06
4) printf ("%07d4", 7206); 0007206
Float Numbers
Output

column--> 12345617829
1) printf("$f", 726.42); 726 .420
2) printf("$5.1f", 726.42); 7 2 6 4
3) printf("%9.3£f", 726.42); 7 2 6 4 2 0
4) printf("%6.2e", 726.42); 7 26 e+ 02

Escape sequences

There is a special character, backslash (\) which causes the C compiler to interpret the
character followed by \ in a different manner. For example, '\n' causes the cursor to

22 Chapter1 »

move to newline. Table 1.5 gives
printf () functions.

Table 1.5 Escape sequences

Introduction to C

the escape sequences that could be used in

SIL No. Character | Description
1 \a alert (bell)
2 \b backspace
3 \f formfeed
4 \n newline
5 \r carriage return
6 \t tab
7 \v vertical tab
8 \\ backslash
9 \? question mark
10 \ single quote
11 \" double quote
12 \000 octal number
13 \xhh hexadecimal number

See below for few examples

/* prints Hello and cursor comes to next line */
printf ("Hello\n");
/* the value of nl and n2 with 8 blanks in between */
printf ("$d\t%d\n", nl, n2);
/* the value of nl and n2 are printed */
printf ("$d\n%d\n", nl, n2); /* two different lines */
Program 1.9
Fahrenheit to Celsius.
#include <stdio.h>
void main()
{
float fahren, cel;
printf ("Enter the temperature in Fahrenheit: ");
scanf ("%f", &fahren); /* get the data */
cel = (5.0 / 9.0) * (fahren - 32.0);
printf ("%$5.1£\t%6.1f\n", fahren, cel);
}
Sample Run
Enter the temperature in Fahrenheit: 96.4

35.8

Fundamentals of Data Structures with C 23

1.6 Operators and Expressions

1.6.1 Introduction

The real power of C language is with its large set of operators. C obtains its fastness in
program execution through the use of sophisticated operators. There are unary, binary
and ternary operators in C.

The concept of operator is same as what is used in mathematics. For example, + is
an arithmetic operator which is used to add two given operands. Therefore, an operator
is one which operates (performs a particular function - addition or subtraction, etc.) on
operands. A set of operands and operators may be called as an expression. Expression
such as a + b * ¢ have been in use for centuries.

There are various types of operators in C in which the major category include,
= arithmetic operators
» relational operators
* increment / decrement operators
= bit-wise operators
» assignment operators

1.6.2 Arithmetic Operators

You can perform arithmetic evaluation of expression with arithmetic operators.

Arithmetic Operators

\Z v

Unary Operators Binary Operators

Unary Operators
Unary Operators have only one operand. There are two unary operators + and -.

+ positive sign
- negative sign

The unary operator — is to get the negative of the operand value and + does not do
anything (i.e. you can write +5 or 5).

Example
-5, +4, +23.568, -67.9

Binary Operators

The binary operators have two operands appearing on either side of the operator. The
following table gives you all the binary operators allowed in C language.

24 Chapter1 » introduction to C

SI. No. | Operator Operation
1 + Addition
2 - Subtraction
3 * Multiplication
4 Division
5 % Modulus or remainder

The binary operators processes the operands given on either side (infix notation) and
yields a single value. For example, 2 + 3 yields 5. The example Program 1.10 given
below demonstrates the use of first four arithmetic operators.

Program 1.10

Arithmetic operators - demo

#include <stdio.h>
void main()

{

}
Sample Run

int a = 5;
int b = 2;
float ¢ = 7.6;
float d = 2.7;

int isum, idiff, imul, idiv;
float fsum, fdiff, fmul, £fdiv;
isum = a + b;

idiff = a - b;

imul = a * b;
idiv = a / b;
fsum = ¢ + d4;
fdiff = ¢ - 4;
fmul = ¢ * 4;

fdiv = ¢ / 4;

printf("Integer arithmetic results: \n");

printf ("$d\t%d\t%d\t%d\n", isum, idiff,
imul, idiv);

printf("Float arithmetic results: \n");

printf ("$E\NLSENEEENERE\N", fsum, fd4Aiff,
fmul, fdiv);

Integer arithmetic results:

7

3 10 2

Float arithmetic results:

